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Time-course expression profiles and methods for spectrum analysis have been applied for detecting transcriptional periodicities,
which are valuable patterns to unravel genes associated with cell cycle and circadian rhythm regulation. However, most of the
proposedmethods suffer from restrictions and large false positives to a certain extent. Additionally, in some experiments, arbitrarily
irregular sampling times as well as the presence of high noise and small sample sizes make accurate detection a challenging task.
A novel scheme for detecting periodicities in time-course expression data is proposed, in which a real-valued iterative adaptive
approach (RIAA), originally proposed for signal processing, is applied for periodogram estimation. The inferred spectrum is then
analyzed using Fisher’s hypothesis test. With a proper 𝑝-value threshold, periodic genes can be detected. A periodic signal, two
nonperiodic signals, and four sampling strategies were considered in the simulations, including both bursts and drops. In addition,
two yeast real datasetswere applied for validation.The simulations and real data analysis reveal that RIAAcanperformcompetitively
with the existing algorithms. The advantage of RIAA is manifested when the expression data are highly irregularly sampled, and
when the number of cycles covered by the sampling time points is very reduced.

1. Introduction

Patterns of periodic gene expression have been found to
be associated with essential biological processes such as
cell cycle and circadian rhythm [1], and the detection of
periodic genes is crucial to advance our understanding of
gene function, disease pathways, and, ultimately, therapeu-
tic solutions. Using high-throughput technologies such as
microarrays, gene expression profiles at discrete time points
can be derived andhundreds of cell cycle regulated genes have
been reported in a variety of species. For example, Spellman
et al. applied cell synchronization methods and conducted
time-course gene expression experiments on Saccharomyces
cerevisiae [2]. The authors identified 800 cell cycle regulated
genes usingDNAmicroarrays. Also, Rustici et al. andMenges
et al. identified 407 and about 500 cell cycle regulated genes
in Schizosaccharomyces pombe and Arabidopsis, respectively
[3, 4].

Signal processing in the frequency domain simplifies the
analysis and an emerging number of studies have demon-
strated the power of spectrum analysis in the detection of
periodic genes. Considering the common issues of missing
values and noise in microarray experiments, Ahdesmäki et
al. proposed a robust detectionmethod incorporating the fast
Fourier transform (FFT) with a series of data preprocessing
and hypothesis testing steps [5]. Two years later, the authors
further proposed a modified version for expression data
with unevenly spaced time intervals [6]. A Lomb-Scargle
(LS) approach, originally used for finding periodicities in
astrophysics, was developed for expression data with uneven
sampling [7]. Yang et al. further improved the performance
using a detrended fluctuation analysis [8]. It used harmonic
regression in the time domain for significance evaluation.
The method was termed “Lomb-Scargle periodogram and
harmonic regression (LSPR).” Basically, these methods con-
sists of two steps: transferring the signals into the frequency
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(spectral) domain and then applying a significance evaluation
test for the resulting peak in the spectral density.

While numerous methods have been developed for
detecting periodicities in gene expression, most of these
methods suffer from false positive errors andworking restric-
tions to a certain extent, particularly when the time-course
data contain limited time points. In addition, no algorithm
seems available to resolve all of these challenges. Microar-
ray as well as other high-throughput experiments, due to
high manufacturing and preparation costs, have common
characteristics of small sample size [9], noisy measurements
[10], and arbitrary sampling strategies [11], thereby making
the detection of periodicities highly challenging. Since the
number and functions of cell cycle regulated genes, or peri-
odic genes, remain greatly uncertain, advances in detection
algorithms are urgently needed.

Recently, Stoica et al. developed a novel nonparametric
method, termed the “real-valued iterative adaptive approach
(RIAA),” specifically for spectral analysis with nonuniformly
sampled data [12]. As stated by the authors, RIAA, an
iteratively weighted least-squares periodogram, can provide
robust spectral estimates and is most suitable for sinu-
soidal signals. These characteristics of RIAA inspired us to
apply it to time-course gene expression data and conduct
an examination on its performance. Herein, we incorpo-
rate RIAA with a Fisher’s statistic to detect transcriptional
periodicities. A rigorous comparison of RIAA with several
aforementioned algorithms in terms of sensitivities and
specificities is conducted through simulations and simula-
tion results dealing with real data analysis are also pro-
vided.

In this study, we found that the RIAA algorithm can
provide robust spectral estimates for the detection of periodic
genes regardless of the sampling strategies adopted in the
experiments or the nonperiodic nature of noise present in
the measurement process. We show through simulations that
the RIAA can outperform the existing algorithms particularly
when the data are highly irregularly sampled, and when the
number of cycles covered by the sampling time points is
very few.These characteristics of RIAA fit perfectly the needs
of time-course gene expression data analysis. This paper is
organized as follows. In Section 2, we begin with an overview
of RIAA. In Section 3, a scheme for detecting periodicities is
proposed, and simulationmodels for performance evaluation
and a real data analysis for validation purposes are presented.
A complete investigation of the performance of RIAA and a
rigorous comparison with other algorithms are provided in
Section 4.

2. RIAA Algorithm

RIAA is an iterative algorithm developed for finding the
least-squares periodogram with the utilization of a weighted
function. The essential mathematics involved in RIAA is
introduced in this section with the algorithm input being
time-course expression data; for more details regarding
RIAA, the readers are encouraged to check the original paper
by Stoica et al. [12].

2.1. Basics. Suppose that the signals associated with the peri-
odic gene expressions are composed of noise and sinusoidal
components. Let 𝑦ℎ(𝑡𝑖), 𝑖 = 1, . . . , 𝑛, denote the time-course
expression ratios of gene ℎ at instances 𝑡1, . . . , 𝑡𝑛, respectively;
𝑦ℎ(𝑡𝑖) are real numbers; ∑𝑛

𝑖=1
𝑦ℎ(𝑡𝑖) = 0. The least-squares

periodogramΦ𝑙𝑠𝑝 is given by

Φ𝑙𝑠𝑝 = |�̂�(𝜔)|
2
, (1)

where �̂�(𝜔) is the solution to the following fitting problem:

�̂� (𝜔) = argmin
𝛼(𝜔)

𝑛

∑

𝑖=1

[𝑦ℎ (𝑡𝑖) − 𝛼 (𝜔) 𝑒
𝑗𝜔𝑡𝑖]
2

. (2)

Let 𝛼(𝜔) = |𝛼(𝜔)|𝑒
𝑗𝜙(𝜔)

= 𝛽𝑒
𝑗𝜃, where 𝛽 = |𝛼(𝜔)| ≥ 0 and

𝜃 = 𝜙(𝜔) ∈ [0, 2𝜋] refer to the amplitude and phase of 𝛼(𝜔),
respectively. The criterion in (2) can then be rewritten as
𝑛

∑

𝑖=1

[𝑦ℎ (𝑡𝑖) − 𝛽 cos (𝜔𝑡𝑖 + 𝜃)]
2
+ 𝛽
2

𝑛

∑

𝑖=1

sin2 (𝜔𝑡𝑖 + 𝜃) . (3)

The second term in the above equation is data indepen-
dent and can be omitted from the minimization operation.
Hence, the criterion (2) is simplified to

(𝛽, 𝜃) = argmin
𝛽,𝜃

𝑛

∑

𝑖=1

[𝑦ℎ (𝑡𝑖) − 𝛽 cos (𝜔𝑡𝑖 + 𝜃)]
2
. (4)

We further apply 𝑎 = 𝛽 cos(𝜃) and 𝑏 = −𝛽 sin(𝜃) and derive
an equivalent of (4) as follows:

(𝑎, �̂�) = argmin
𝑎,𝑏

𝑛

∑

𝑖=1

[𝑦ℎ (𝑡𝑖) − 𝑎 cos (𝜔𝑡𝑖) − 𝑏 sin (𝜔𝑡𝑖)]
2
. (5)

The target of interest to the fitting problem now becomes 𝑎
and �̂� (instead of 𝛼(𝜔)), and the solution is well known to be

[
𝑎

�̂�
] = R−1r, (6)

where

R =

𝑛

∑

𝑖=1

[
cos (𝜔𝑡𝑖)

2 cos (𝜔𝑡𝑖) sin (𝜔𝑡𝑖)
sin (𝜔𝑡𝑖) cos (𝜔𝑡𝑖) sin (𝜔𝑡𝑖)

2 ] ,

r =
𝑛

∑

𝑖=1

[
cos (𝜔𝑡𝑖)
sin (𝜔𝑡𝑖)

] 𝑦ℎ (𝑡𝑖) .

(7)

After 𝑎 and �̂� are estimated, the least-squares periodogram
can be derived.

2.2. Observation Interval and Resolution. Prior to implemen-
tation of RIAA for periodogram estimation, the observation
interval [0, 𝜔max] and the resolution in terms of grid size have
to be selected. To this end, the maximum frequency 𝜔max in
the observation interval without aliasing errors for sampling
instances 𝑡1, . . . , 𝑡𝑛, can be evaluated by

𝜔max =
𝜔0

2
, (8)
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where 𝜔0 is given by

𝜔0 =
2 (𝑛 − 1) 𝜋

∑
𝑛−1

𝑖=1
(𝑡𝑖+1 − 𝑡𝑖)

. (9)

The observation interval [0, 𝜔max] is hence chosen after 𝜔max
is obtained.

To ensure that the smallest frequency separation in time-
course expression data with regular or irregular sampling can
be adequately detected, the grid size Δ𝜔 is chosen to be

Δ𝜔 =
2𝜋

𝑡𝑛 − 𝑡1
, (10)

which, in fact, is the resolution limit of the least-squares
periodogram. As a result, the frequency grids 𝜔𝑔 considered
in periodogram are

𝜔𝑔 = 𝑔Δ𝜔, 𝑔 = 1, . . . , 𝐺, (11)

where the number of grids 𝐺 is given by

𝐺 = ⌊
𝜔max
Δ𝜔

⌋ . (12)

2.3. Implementation. The following notations are introduced
for the implementation of RIAA at a specific frequency 𝜔𝑔:

Y = [𝑦ℎ (𝑡1) ⋅ ⋅ ⋅ 𝑦ℎ (𝑡𝑛)]
𝑇
,

𝜌𝑔 = [𝑎 (𝜔𝑔) 𝑏 (𝜔𝑔)]
𝑇

,

A𝑔 = [c𝑔 s𝑔] ,

(13)

where

c𝑔 = [cos (𝜔𝑔𝑡1) ⋅ ⋅ ⋅ cos (𝜔𝑔𝑡𝑛)]
𝑇

,

s𝑔 = [sin (𝜔𝑔𝑡1) ⋅ ⋅ ⋅ sin (𝜔𝑔𝑡𝑛)]
𝑇

,

(14)

and 𝑎(𝜔𝑔) and 𝑏(𝜔𝑔) denote variables 𝑎 and 𝑏 at frequency𝜔𝑔,
respectively.

RIAA’s salient feature is the addition of a weighted matrix
Q𝑔 to the least-squares fitting criterion. The weighted matrix
Q𝑔 can be viewed as a covariance matrix encapsulating the
contributions of noise and other sinusoidal components in Y
other than 𝜔𝑔 to the spectrum; it is defined as

Q𝑔 = Σ +
𝐺

∑

𝑚=1,𝑚 ̸= 𝑔

A𝑚D𝑚A
𝑇

𝑚
, (15)

where

D𝑚 =
𝑎
2
(𝜔𝑔) + 𝑏

2
(𝜔𝑔)

2
[
1 0

0 1
] , (16)

and Σ denotes the covariance matrix of noise in expression
data Y, given by

Σ =
[
[

[

𝜎
2

. . . 0

...
. . .

...
0 . . . 𝜎

2

]
]

]

. (17)

Assuming thatQ𝑔 is invertible, in RIAA, a weighted least-
squares fitting problem is formulated and considered for
finding 𝑎 and �̂� (instead of using (5)), and it is written in the
form of matrices using (13) as follows:

𝜌𝑔 = argmin
𝜌𝑔

[Y − A𝑔𝜌𝑔]
𝑇

Q−1
𝑔
[Y − A𝑔𝜌𝑔] . (18)

In Stoica et al. [12], the solution to (18) has been shown to
be

𝜌𝑔 =
A𝑇
𝑔
Q−1
𝑔
Y

A𝑇
𝑔
Q−1
𝑔
A𝑔

, (19)

and the RIAA periodogram at 𝜔 = 𝜔𝑔 can be derived by

Φriaa (𝜔𝑔) =
1

𝑛
𝜌
𝑇

𝑔
(A𝑇
𝑔
A𝑔) 𝜌𝑔. (20)

From (15) and (19), it is obvious thatQ𝑔 and 𝜌𝑔 are dependent
on each other. An iterative approach (i.e., RIAA) is hence
a feasible solution to get the estimate 𝜌𝑔 and the weighted
matrixQ𝑔.

The iteration for estimating spectrum starts with initial
estimates 𝜌0

𝑔
, in which the elements 𝑎 and �̂� are given by (6)

with 𝜔 = 𝜔𝑔, 𝑔 = 1, . . . , 𝐺. After initialization, the first
iteration begins. First, the elements 𝑎 and �̂� of 𝜌0

𝑔
are applied

to obtain D̂1
𝑚
using (16). Secondly, to get a good estimate of

�̂�
1, the frequency 𝜔𝑝 at which the largest value-𝑝 is located

in the temporary periodogramΦ
0
(𝜔𝑔), 𝑔 = 1, . . . , 𝐺, derived

using (20) with 𝜌𝑔 = 𝜌
0

𝑔
, is applied for obtaining a reversed

engineered signal Ŷ0. The elements 𝑦ℎ(𝑡𝑖), 𝑖 = 1, . . . , 𝑛, in Ŷ0
are given by

𝑦ℎ (𝑡𝑖) =
√2𝑃 cos (𝜔𝑝𝑡𝑖 + 𝑠) , 𝑖 = 1, . . . , 𝑛. (21)

The phase of the cosine function 𝑠 is unknown; however, �̂�1
is estimable using

�̂�
1
= min
𝑠∈[0,2𝜋]


Y − Ŷ0

2

𝑛
, (22)

where || ⋅ || is the Euclidean norm. With estimates D̂1
𝑚
and

�̂�
1, the estimates Q̂1

𝑔
, 𝑔 = 1, . . . , 𝐺, in the first iteration are

hence given by (15). After this, Q̂1
𝑔
are inserted into the right-

hand side of (19) and updated estimates 𝜌1
𝑔
, 𝑔 = 1, . . . , 𝐺,

are derived. The algorithm consists of repeating these steps
and updating Q̂𝑘

𝑔
and 𝜌

𝑘

𝑔
iteratively, where 𝑘 denotes the

number of iterations, until a termination criterion is reached.
If the process stops at the 𝐾th iteration, then the final RIAA
periodogram is given by (20) using 𝜌𝐾

𝑔
. The pseudocode in

Algorithm 1 represents a concise description of the iterative
RIAA process.

3. Methods

Figure 1 demonstrates our scheme for periodicity detection
and algorithm comparison. The first step involves a peri-
odogram estimation, which converts the time-course gene
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Algorithm RIAA

Initialization
Use (6) to obtain the initial estimates 𝑎 and �̂� in 𝜌0

𝑔
.

TheFirst Iteration
Obtain D̂1

𝑚
using (16) with parameters 𝑎 and �̂� given by 𝜌0

𝑔
. Obtain �̂�1 using (22). Using D̂1

𝑚

and �̂�1 to drive the first weighted matrix Q̂1
𝑔
by (15). Update estimate 𝜌1

𝑔
by (19) withQ𝑔 = Q̂1

𝑔
.

Updating Iteration
At the 𝑘th iteration, 𝑘 = 1, 2, . . ., estimates Q̂𝑘

𝑔
and 𝜌𝑘

𝑔
are iteratively updated in the same way

as the first iteration.
Termination
Terminate simply after 15 iterations (𝐾 = 15), or when the total changes in 𝑑𝑘

𝑔
= ||𝜌
𝑘

𝑔
||

for 𝑔 = 1, . . . , 𝐺, is extremely small, say,√∑𝐺
𝑔=1

(𝑑𝑘
𝑔
− 𝑑𝑘−1
𝑔

)
2
< 0.005√∑𝐺

𝑔=1
(𝑑𝑘−1
𝑔

)
2, then 𝐾 = 𝑘.

Algorithm 1: The pseudocode of the iterative process in RIAA.

expression ratios into the frequency domain. Three methods
are considered for comparison: RIAA, LS, and a detrend LS
(termed DLS), which uses an additional detrend function
(developed in LSPR) before regular LS periodogram estima-
tion is applied. The derived spectra are then analyzed using
hypothesis testing. This study is conducted using a Fisher’s
test, with the null hypothesis that there are no periodic
signals in the time domain and hence no significantly large
peak in the derived spectra. The algorithm performance
is evaluated and compared via simulations and receiver
operating characteristic (ROC) curves. In real microarray
data analysis, three published benchmark sets are utilized as
standards of cell cycle genes for performance comparison.

3.1. Fisher’s Test. After the spectrum of time-course expres-
sion data is obtained via periodogram estimation, a Fisher’s
statistic 𝑓 for gene ℎ with the null hypothesis 𝐻0 that
the peak of the spectral density is insignificant against the
alternative hypothesis𝐻1 that the peak of the spectral density
is significant is applied as

𝑓ℎ =
max1≤𝑔≤𝐺 (Φ (𝜔𝑔))

𝐺−1∑
𝐺

𝑔=1
Φ(𝜔𝑔)

, (23)

where Φ refers to the periodogram derived using RIAA, LS,
or DLS. The null hypothesis 𝐻0 is rejected, and the gene
ℎ is claimed as a periodic gene if its 𝑝-value, denoted as
𝑝ℎ, is less than or equal to a specific significance threshold.
For simplicity, 𝑝ℎ is approximated from the asymptotic null
distribution of 𝑓 assuming Gaussian noise [13] as follows:

𝑝ℎ = 1 − 𝑒
−𝑛𝑒
−𝑓
ℎ

. (24)

In real data analysis, deviation might be invoked for the
estimation of 𝑝ℎ when the time-course data is short. This
issue was carefully addressed by Liew et al. [14], and, as
suggested, alternative methods such as random permutation
may provide less deviation and better performance. However,
permutation also has limitations such as tending to be con-
servative [15]. While finding the most robust method for the
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Hypothesis
testing

Benchmark
sets

Real data

RIAA,
compared with
LS, DLS

Periodic genes and
nonperiodicities

Simulations
ROC curves

Fisher’s test

Figure 1: The scheme of the process for detecting periodicities in
time-course expression data.

𝑝-value evaluation remains an open question, it gets beyond
the scope of this study since the algorithm comparison via
ROC curves is threshold independent [16], and the results are
unaffected by the deviation.

3.2. Simulations. Simulations are applied to evaluate the
performance of RIAA. The simulation models and sampling
strategies used for simulations are described in the following
paragraphs.

3.2.1. Periodic and Nonperiodic Signals. Three models, one
for periodic signals and two for nonperiodic signals, are
considered as transcriptional signals. Since periodic genes are
transcribed in an oscillatory manner, the expression levels 𝑦𝑠
embedded with periodicities are assumed to be

𝑦𝑠 (𝑡𝑖) = 𝑀 cos (𝜔𝑠𝑡𝑖) + 𝜖𝑡𝑖
, 𝑖 = 1, . . . , 𝑛, (25)

where 𝑀 denotes the sinusoidal amplitude; 𝜔𝑠 refers to the
signal frequency; 𝜖𝑡𝑖 are Gaussian noise independent and
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Figure 2: (a) A time-course periodic signal with frequency = 0.2 sampled by the bio-like sampling strategy; 16 time points are assigned to
the interval (0,8], and 8 time points are assigned to the interval (8,16]. (b)The periodogram derived using RIAA.Themaximum value (peak)
in the periodogram locates at frequency = 0.195.

identically distributed (i.i.d.) with parameters 𝜇 and 𝜎. For
nonperiodic signals, the first model 𝑦𝑛 is simply composed of
Gaussian noise, given by

𝑦𝑛 (𝑡𝑖) = 𝜖𝑡𝑖
, 𝑖 = 1, . . . , 𝑛. (26)

Additionally, as visualized by Chubb et al., gene transcription
can be nonperiodically activated with irregular intervals in a
living eukaryotic cell, like pulses turning on and off rapidly
and discontinuously [17]. Based on this, the second nonpe-
riodic model 𝑦

𝑛
incorporates one additional transcriptional

burst and one additional sudden drop into the Gaussian
noise, which can be written as

𝑦


𝑛
(𝑡𝑖) = 𝐼𝑏 (𝑡𝑖) − 𝐼𝑑 (𝑡𝑖) + 𝜖𝑡𝑖

, 𝑖 = 1, . . . , 𝑛, (27)

where 𝐼𝑏 and 𝐼𝑑 are indicator functions, equal to 1 at the
location of the burst and the drop, respectively, and 0

otherwise. The transcriptional burst assumes a positive pulse
while the transcriptional drop assumes a negative pulse. Both
of them may be located randomly among all time points and
are assumed to last for two time points. In other words, the
indicator functions are equal to 1 at two consecutive time
points, say, 𝐼𝑏 = 1 at 𝑡𝑖 and 𝑡𝑖+1. The burst and the drop have
no overlap.

3.2.2. Sampling Strategies. As for the choices of sampling time
points 𝑡𝑖, 𝑖 = 1, . . . , 𝑛, four different sampling strategies, one
with regular sampling and three with irregular sampling, are
considered. First, regular sampling is applied inwhich all time
intervals are set to be 1/𝑐, where 𝑐 is a constant. Secondly,
a bio-like sampling strategy is invoked. This strategy tends
to have more time points at the beginning of time-course
experiments and less time points after we set the first 2/3
time intervals as 1/𝑐 and set the next 1/3 time intervals
as 2/𝑐. Third, time intervals are randomly chosen between
1/𝑐 and 2/𝑐. The last sampling strategy, in which all time
intervals are exponentially distributed with parameter 𝑐, is
less realistic than the others but it is helpful for us to evaluate
the performance of RIAA under pathological conditions.

ROC curves are applied for performance comparison.
To this end, 10,000 periodic signals were generated using
(25) and 10,000 nonperiodic signals were generated using
either (26) or (27). Sensitivity measures the proportion of
successful detection among the 10,000 periodic signals and
specificity measures the proportion of correct claims on
the 10,000 nonperiodic simulation datasets. Sampling time
points are decided by one of the four sampling strategies and
the number of time points 𝑛 is chosen arbitrarily. For all ROC
curves in Section 4, 𝑐 = 2 and 𝑛 = 24.

3.3. Real Data Analysis. Two yeast cell cycle experiments
synchronized using an alpha-factor, one conducted by Spell-
man et al. [2] and one conducted by Pramila et al. [18],
are considered for a real data analysis. The first time-
course microarray data, termed dataset alpha and down-
loaded from the Yeast Cell Cycle Analysis Project website
(http://genome-www.stanford.edu/cellcycle/), harbors 6,178
gene expression levels and 18 sampling time points with a 7-
minute interval.The second time-course data, termed dataset
alpha 38, is downloaded from the online portal for Fred
Hutchinson Cancer Research Center’s scientific laboratories
(http://labs.fhcrc.org/breeden/cellcycle/). This dataset con-
tains 4,774 gene expression levels and 25 sampling time points
with a 5-minute interval. Three benchmark sets of genes that
have been utilized in Lichtenberg et al. [19] and Liew et al.
[20] as standards of cell cycle genes are also applied herein for
performance comparison. These benchmark sets, involving
113, 352, and 518 genes, respectively, include candidates of
cycle cell regulated genes in yeast proposed by Spellman et al.
[2], Johansson et al. [21], Simon et al. [22], Lee et al. [23], and
Mewes et al. [24] and are accessible in a laboratory website
(http://www.cbs.dtu.dk/cellcycle/).

4. Results

RIAA performed well in the conducted simulations. As
shown in Figure 2(a), a periodic signal (solid line) with
amplitude 𝑀 = 1 and frequency 𝜔𝑠 = 0.4𝜋 is sampled

http://genome-www.stanford.edu/cellcycle/
http://labs.fhcrc.org/breeden/cellcycle/
http://www.cbs.dtu.dk/cellcycle/
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Figure 3: The ROC curves derived from simulations with 24 sampling time points, signal amplitude𝑀 = 1, 𝜔𝑠 = 0.4𝜋, and Gaussian noise
𝜇 = 0 and 𝜎 = 0.5. Description of subplots is provided in Section 4.
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Figure 4: The ROC Curves derived from simulations with 24 sampling time points, signal amplitude𝑀 = 1, 𝜔𝑠 = 0.1𝜋, and Gaussian noise
𝜇 = 0 and 𝜎 = 0.5. Description of subplots is provided in Section 4.
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Figure 5:The intersection of preserved genes and the benchmark sets using RIAA, LS, andDLS algorithms. (a), (b), and (c) reveal the analysis
results when dataset alpha was applied. (d), (e), and (f) reveal the analysis results when dataset alpha 38 was applied.

using the bio-like sampling strategy, which applies 16 time
points in (0,8] and 8 more time points in (8,16]. Gaussian
noise with parameters 𝜇 = 0 and 𝜎 = 0.5 is assumed
during microarray experiments. The resulting time-course
expression levels (dots), at a total of 24 time points and
the sampling time information were treated as inputs to
the RIAA algorithm. Figure 2(b) demonstrates the result
of periodogram estimation. In this example, the grid size
Δ𝜔 was chosen to be 0.065 and a total of 11 amplitudes
corresponding to different frequencies were obtained and
shown in the spectrum. Using Fisher’s test, the peak at the
third grid (frequency = 0.195) was found to be significantly
large (𝑝-value = 2.4 × 10 −3), and hence a periodic gene was
claimed.

ROC curves strongly illustrate the performance of RIAA.
In Figures 3 and 4, subplots (a)-(b), (c)-(d), (e)-(f), and (g)-
(h) refer to the simulations with regular, bio-like, binomi-
ally random, and exponentially random sampling strategies,
respectively. Additionally, in the left-hand side subplots (a),
(c), (e), and (g), nonperiodic signals were simply Gaussian
noise with parameters 𝜇 = 0 and 𝜎 = 0.5, while in the

right-hand side subplots (b), (d), (f), and (h), nonperiodic
signals involve not only the Gaussian noise but also a
transcriptional burst and a sudden drop (27). Periodic signals
were generated using (25) with amplitude 𝑀 = 1, 𝑐 = 2, and
𝑛 = 24. The only difference in simulation settings between
Figures 3 and 4 is the frequency of periodic signals; they are
𝜔𝑠 = 0.4𝜋 and 0.1𝜋, respectively. As shown in these figures,
LS and DLS can perform well as RIAA when the time-course
data are regularly sampled, or mildly irregularly sampled;
however, when data are highly irregularly sampled, RIAA
outperforms the others. The superiority of RIAA over DLS
is particularly clear when the signal frequency is small.

Figure 5 illustrates the results of the real data analysis
when these three algorithms, namely, the RIAA, LS, and
DLS, were applied. On the 𝑥-axis, the numbers indicate the
thresholds 𝜂 that we preserved and classified as periodicities
among all yeast genes; on the y-axis, the numbers refer
to the intersection of 𝜂 preserved genes and the proposed
periodic candidates listed in the benchmark sets. Figures
5(a)–5(c) demonstrate the results derived from dataset alpha
when the 113-gene benchmark set, 352-gene benchmark
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set, and 518-gene benchmark set were applied, respectively.
Similarly, Figures 5(d)–5(f) demonstrate the results derived
from dataset alpha 38.The RIAA does not result in significant
differences in the numbers of intersections when compared
to those corresponding to LS and DLS in most of these
cases. However, RIAA shows slightly better coverage when
the dataset alpha 38 and the 113-gene benchmark set was
utilized (Figure 5(d)).

5. Conclusions
In this study, the rigorous simulations specifically designed
to comfort with real experiments reveal that the RIAA can
outperform the classical LS and modified DLS algorithms
when the sampling time points are highly irregular, andwhen
the number of cycles covered by sampling times is very
limited. These characteristics, as also claimed in the original
study by Stoica et al. [12], suggest that the RIAA can be
generally applied to detect periodicities in time-course gene
expression data with good potential to yield better results. A
supplementary simulation further shows the superiority of
RIAA over LS and DLS when multiple periodic signals are
considered (see Supplementary Figure s1 available online at
http://dx.doi.org/10.1155/2013/171530). From the simulations,
we also learned that the addition of a transcriptional burst and
a sudden drop to nonperiodic signals (the negatives) does not
affect the power of RIAA in terms of periodicity detection.
Moreover, the detrend function in DLS, designed to improve
LS by removing the linearity in time-course data, may fail to
provide improved accuracy and makes the algorithm unable
to detect periodicities when transcription oscillates with a
very low frequency.

The intersection of detected candidates and proposed
periodic genes in the real data analysis (Figure 5) does not
reveal much differences among RIAA, LS, and DLS. One
possible reason is that the sampling time points conducted
in the yeast experiment are not highly irregular (not many
missing values are included), since, as demonstrated in Fig-
ures 3(a)–3(d), the RIAA just performs equally well as the LS
and DLS algorithms when the time-course data are regularly
or mildly irregularly sampled. Also, the very limited time
points contained in the dataset may deviate the estimation
of 𝑝-values [14] and thus hinder the RIAA from exhibiting
its excellence. Besides, the number of true cell cycle genes
included in the benchmark sets remains uncertain.We expect
that the superiority of RIAA in real data analysis would be
clearer in the future when more studies and more datasets
become available.

Besides the comparison of these algorithms, it is inter-
esting to note that the bio-like sampling strategy could lead
to better detection of periodicities than the regular sampling
strategy (as shown in Figures 3(c) and 3(d)). It might be
beneficial to apply loose sampling time intervals at posterior
periods to prolong the experimental time coverage when the
number of time points is limited.
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